ARES NO_x Sensor Development

Los Alamos National Laboratory

Eric L. Brosha, R. Mukundan, Roger Lujan and David Brown, Research Staff

Fernando H. Garzon, Sensor Project Leader

Materials Science and Technology Division
Electrochemical Materials and Devices Group, MST-11

Project Description, Goals, and Objectives

- Develop new, lost cost, high-temperature solid-state sensors to detect NO_x in the exhaust gas stream of a reciprocating engine.
 - Ceramic sensors that operate on electrochemical principles
- Sensors to control regenerative NO_x catalyst systems.
- Sensors must be inexpensive, robust, and be able to detect NO_x in regimes of PO₂, T, [NOx] characteristic of current recip engine technology
- Lifetime, stability, sensitivity, response time, sulfur tolerance, device reproducibility, cost, etc.

Project Team - LANL

- LANL team has 10 years of experience in the development of gas sensor technology
 - Oxygen
 - Sulfur dioxide
 - Hydrocarbons
 - Carbon Monoxide
- LANL CRADA with USCAR to develop high temperature electrochemical sensors for OBD-II applications.
- FY 1997 2001
 - Sensors required to measure real-time NMHC concentrations post catalytic converter with minimum CO cross interference as possible replacement of dual O₂ sensor approach currently used.
 - Partners: Ford, GM, and Chrysler
- "Mixed Potential Hydrocarbon Sensor with Low Sensitivity to Methane and CO" submitted for U.S. Patent, Spring 2000.

Project Team - con't

- Previous LANL sensor work examples:
 - LDRD sensor development work
 - "Controlled Interface Gas Sensors", U.S. Patent applied for 2002.
 - Sulfur resistant O₂ combustion control sensors
 - Winner 1999 R&D 100 award in collaboration with Rosemount Analytical Co.
 - U.S. Patent no. 6,277,256
 - Amperometric response, lean burn O₂ sensor work in collaboration with Delphi Automotive
 - U.S. Patent no.s 5,695,624 & 5,543,025
- <u>University Collaboration</u>: ARES NO_x sensor development work will be performed in collaboration with Dr. Eric Wachsman and his sensor team at the University of Florida

Impact on Goals of ARES Program

- Advanced reciprocating engines require new sensor technologies to reduce emissions and improve over-all efficiency.
 - NO_x emissions monitoring and control
 - Engine control
 - Control of NO_x regeneration catalysts and systems
- E.g. NO_x emissions cannot exceed 50 150 ppm (0.1 g/hp-hr).
- A NO_x sensor is needed to monitor and control emissions systems.
- Currently there is no suitable sensing technology available that is low-cost sulfur tolerant, long-lifetime, etc.

Milestones completed and planned

- Assemble analytical NOx capability at LANL with resources that are available.
 Completed
- Fabricate devices for initial study to demonstrate proof-of-concept. Completed
- Test and calibrate analytical [NO_x] system and build new test stations. Underway
- Study factors that affect sensitivity, lifetime, response time.
- Study electrode materials NO_x catalysis and electrocatalysis.
- Study electro-catalysis and NO_x mixed potential electrochemistry.
- Improve NO_x sensor.

Development of NO_x Analysis Capability

- Program code received February 2002.
- First task was to build an inhouse NO_x measurement capability.
 - [NO_x] changes over time
 - Complex equilibrium in presence of O₂
- Capital equipment money to purchase commercial analytical NO_x analysis instrumentation was not approved.
- We have obtained and made modifications to a salvaged GC/MS system that may allow us to characterize [NO_x] and study catalysis.

Preliminary Sensor Results

- Different metal oxide electrode selected based on observations of higher NO_x catalysis.
- Initial testing performed hot 650°C and in 1%O₂
- Mixed potential response to NO₂ with no sensitivity to NO.
- Interference to CO and HC's
 - almost 5:1 sensitivity to NO₂

Time (min)

Preliminary Sensor Results - level stability and response time

- Two mixed potential sensors are currently being studied for:
 - Stability 800 hrs
 - cross sensitivity C₃H₆, C₃H₈, CO, CH₄
 - Reproducibility two devices
 - response time has been measured but test system has not been optimized to permit quantification.
 - sensors are faster than the experimental set-up.
- Data below: 600°C, 1%O₂

Key Technical Barriers and Project Risks

- Key technical barriers are:
 - Designing sensors with adequate sensitivity and selectivity
 - Elimination of cross interferences
 - Response stability over sensor lifetime
 - Electrode ageing phenomena

Summary

- LANL NO_x sensor work commenced in February 2002.
- Assembly of gas chromatography mass spectroscopy system for analytical NO_x measurement complete. System is being tested and calibrated to see if method is viable to reliably measure concentrations of oxides of nitrogen.
- Fabricated several prototype mixed potential-based NO_x sensors for characterization.
- Demonstrated NO_2 response at $1\%O_2$ and in air at $[NO_2] = 25-100$ ppm
 - briefly examined level stability and potential for device fabrication with high device to device reproducibility - devices are excellent in both regards
- Expanding work to study factors which affect response time, NO_x sensitivity, cross sensitivity, temperature coefficients, device reproducibility, etc.

